SECURITY AND PRIVACY OF BIG DATA: A NIST WORKING GROUP PERSPECTIVE

Arnab Roy Fujitsu Laboratories of America

Co-Chair, Security and Privacy Subgroup NIST Big Data Working Group

A 10000-FEET VIEW

A 10000-FEET VIEW

EMERGENT S&P CONSIDERATIONS

(Big) Scaling -Retarget to Big Data infrastructural shift

Distributed computing platforms like Hadoop

Non-relational data stores

(Data) Mixing – Control visibility while enabling utility

Balancing privacy and utility

Enabling analytics and governance on encrypted data

Reconciling authentication and anonymity

INFORMATION VALUE CHAIN

CONCEPTUAL TAXONOMY OF S&P TOPICS

Communication Privacy

Privacy Preserving Dissemination

Physical and Virtual Resources (networking, computing, etc.)

7

Control

OPERATIONAL TAXONOMY OF S&P TOPICS

EMERGING CRYPTOGRAPHIC TECHNOLOGIES

Utility of Encrypted Client Data	Technology
No operation possible at Cloud	Standard Encryption
Controlled results visible at Cloud	Searchable Encryption - Symmetric - Asymmetric
Transformations possible, but results not visible to Cloud	Homomorphic Encryption
Policy-based Access Control	Identity-based Encryption Attribute-based Encryption

DATA GOVERNANCE: POLICY-BASED ENCRYPTION

- Traditionally access control has been enforced by systems –
 Operating Systems, Virtual Machines
 - Restrict access to data, based on access policy
 - Data is still in plaintext
 - Systems can be hacked!
 - Security of the same data in transit is ad-hoc
- What if we protect the data itself in a cryptographic shell depending on the access policy?
 - Decryption only possible by entities allowed by the policy
 - Keys can be hacked! but much smaller attack surface
 - Encrypted data can be moved around, as well as kept at rest – uniform handling

IDENTITY-BASED ENCRYPTION

Mitchell et al.

POLICY-BASED ENCRYPTION

PRIVACY PRESERVING DISSEMINATION: SEARCHING AND FILTERING ENCRYPTED DATA

- Suppose you have a system to receive emails encrypted under your public key
- However, you do not want to receive spam mails
- With plain public key encryption, there is no way to distinguish a legitimate email ciphertext from a spam ciphertext!
- However, with recent techniques you can do the following:
 - Give a 'token' to the spam filter
 - Spam filter can apply token to the ciphertext, only deducing whether it is spam or not
 - Filter doesn't get any clue about any other property of the mail!

SEARCHING AND FILTERING ENCRYPTED DATA

SECURE DATA FILTRATION

• Problem Scenario:

- The intelligence gathering community needs to collect a useful subset of huge streaming sources of data
- The criteria for being useful may be classified *private criteria*
- Most of the streaming data is useless and storing it all may be impractical – *filter at source*
- How de we keep the filtering criteria secret even if it is executing at the source?
- Solution: *Obfuscate* the filtration code
 - Even if the source falls into enemy hands, it cannot figure out the criteria

SINGLE CLIENT END-TO-END PRIVACY: SECURE OUTSOURCING OF COMPUTATION

- Suppose you want to send all your sensitive data to the cloud: photos, medical records, financial records, ...
- You could send everything encrypted
 - But wouldn't be much use if you wanted the cloud to perform some computations on them
 - What if you wanted to see how much you spent on movies last month?
- Solution: Fully Homomorphic Encryption
 - Cloud can perform any computation on the underlying plaintext, all the while the results are encrypted!
 - Cloud has no clue about the plaintext or the results

Secure Outsourcing of Computation

Fully Homomorphic Encryption (FHE)

- With FHE, computation on plaintext can be transformed into computation on ciphertext
- As a use case, a cloud can keep and process customer's data without ever knowing the contents
 - Only customer can decrypt the processed data
 - End to end security of customer data

How does FHE work?

• Intuition:

- Represent programs as circuits
 - Sequence of additions and multiplications
- Transform the input data to a high dimensional ring (popularly, lattices)
 - Exploit ring homomorphism with respect to +,×

Source: http://cseweb.ucsd.edu/~daniele/lattice/lattice.html

HOW DOES FHE WORK?

- How do we ensure that the transformed representation hides the plaintext?
 - Solution: add some noise to the representation
 - In sufficiently high dimensions, it is considered hard to derive the closest lattice point, when noise is added
- Now, we have a different problem
 - With each +,×, noise grows!
 - At some point, data may be irrecoverable
 - Solution: noise reduction techniques
 - Bootstrapping, Modulus switching

Source: http://cseweb.ucsd.edu/~daniele/lattice/lattice.html

THANKS!